Search published articles


Showing 16 results for Silica

Salahi E., Ebadzadeh T., Moztar Zadeh F., Solati Hashjin M.,
Volume 2, Issue 4 (12-2005)
Abstract

Compositions of Al2O3+Si, SiO2+Al and Al+Si systems were prepared to study the effect of reaction bonding process on the mullite formation. The composition of each system was adopted according to mullite stoichiometery and sintered in 700-1600°C range. Results showed that the formation of reaction bonded mullite starting from Al2O3+Si mixtures, proceeded in two partially overlapping steps, the oxidation of Si to SiO2, and the reaction of SiO2 and Al2O3 to form mullite. In this system, up to 1400°C, conversion of Si to SiO2 was taken place and cristobalite formed, but mullite formation was not observed. Mullite phase started to form at 1450°C. Results indicated that complete reaction was not occurred up to 1600°C and 2 hours soaking time. XRD patterns of samples in Al+ SiO2 system showed that the reaction through sequences: (a) reduction of SiO2 by Al, (b) formation of a- Al2O3 and SiO2-rderived Si oxidation, and (c) mullite formation. X-ray diffraction patterns of heat-treated Al+Si system showed that reaction between Al and oxygen at 900°C was occurred with the reaction product being a- Al2O3 Oxidation of Si and formation of mullite were not detected in this system. SEM micrographs showed that both Al2O3+Si and SiO2+Al systems have similar microstructures, which consisted of a- Al2O3, mullite and free Si. The microstructures of the samples in Al+Si system consisted of a- Al2O3 free Al and Si with intermetallic Al-Si compound.
A. Moosavi, A. Aghaei,
Volume 5, Issue 2 (6-2008)
Abstract

Abstract: Auto-ignited gel combustion process has been used for producing a red hematite-zircon based pigment. The combustible mixtures contained the metal nitrates and citric acid as oxidizers and fuel, respectively. Sodium silicate (water glass) was used as silica source for producing zircon phase. X-Ray Diffractometery, Electron Microscopy and Simultaneous Thermal Analysis were used for characterization of reactions happened in the resulted dried gel during its heat-treatment. L* a* b* color parameters were measured by the CIE (Commission International de I'Eclairage) colorimetric method. This research has showed that solution combustion was unable to produce coral pigment as the end product of combustion without the need for any further heat treatment process.
William L. Headrick,, Alireza Rezaie, William G. Fahrenholtz,
Volume 5, Issue 2 (6-2008)
Abstract

gasification (BBLG). One particularly harsh application is linings for gasifiers used in the treatment of black liquor (BL). Black liquor is a water solution of the non-cellulose portion of the wood (mainly lignin) and the spent pulping chemicals (Na2CO3, K2CO3, and Na2S). Development of new refractory materials for the black liquor gasification (BLG) application is a critical issue for implementation of this technology. FactSage® thermodynamic software was used to analyze the phases present in BL smelt and to predict the interaction of BL smelt with different refractory compounds. The modeling included prediction of the phases formed under the operating conditions of high temperature black liquor gasification (BLG) process. At the operating temperature of the BLG, FactSage® predicted that the water would evaporate from the BL and that the organic portion of BL would combust, leaving a black liquor smelt composed of sodium carbonate (70-75%), potassium carbonate (2-5%), and sodium sulfide (20-25%). Exposure of aluminosilicates to this smelt leads to significant corrosion due to formation of expansive phases with subsequent cracking and spalling. Oxides (ZrO2, CeO2, La2O3, Y2O3, Li2O, MgO and CaO) were determined to be resistant to black liquor smelt but non-oxides (SiC and Si3N4) would oxidize and dissolve in the smelt. The other candidates such as MgAl2O4 and BaAl2O4 were resistant to sodium carbonate but not to potassium carbonate. LiAlO2 was stable with both sodium carbonate and potassium carbonate. Candidate materials selected on the basis of the thermodynamic calculations are being tested by sessile drop test for corrosion resistance to molten black liquor smelt. Sessile drop testing has confirmed the thermodynamic predictions for Al2O3, CeO2, MgO and CaO. Sessile drop testing showed that the thermodynamic predictions were incorrect for ZrO2.
N. Hamedani Golshan,, H. Sarpoolaky, A. R. Souri,
Volume 8, Issue 1 (3-2011)
Abstract

Abstract: Efforts have been carried out in order to use microsilica to develop a forsterite bond rather than other types of binders in the basic refractory castables. According to the higher drying rate and sinterability of colloidal silica, it has been proposed in the recent years. In the present work, effects of replacement of microsilica by colloidal silica evolution of forsterite bond have been studied in magnesia based refractory castables. In this way, Physical properties of prepared samples with different amount of colloidal silica versus temperature were investigated. In addition, phase variation and microstructural evolution of sintered specimens at 1000, 1200 and 1400 °C were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. Results showed that, due to Reaction of magnesia with microsilica and colloidal silica, magnesium hydrate and magnesium silicate hydrate formed in the dried samples strengthening the texture of the samples while forsterite formed from about 1000 °C and gradually increased with temperature rise. Also, better forsterite formation would be appeared by increasing the colloidal silica content. Further investigation carried out on the type of silica addition on properties of the castable refractory samples. It was found that the presence of micro silica and colloidal silica simultaneously (MS3C3 sample) at 1400 °C, caused modifying mechanical strength in compare with sample with only micro silica (MS sample).
H. Yaghoubi, H. Sarpoolaky, F. Golestanifard, A. Souri,
Volume 9, Issue 2 (6-2012)
Abstract

Colloidal silica bonded refractory castables have been developed recently. It was found that colloidal silica is one of the best binders can substitute other binders such as cement in No Cement Castable (NCC) and Ultra Low Cement Castable (ULCC) refractories. Also composition of colloidal silica with appropriate additives resulted in a gel form which makes the initial strength. Moreover, the nano size silica particles are extremely reactive in high alumina castables and may encourage the mullite formation in the microstructure. In the current study, four castables were prepared. The sample containing 6wt % microsilica was a reference, then microsilica was replaced by different amount of colloidal silica (2.5, 5, 7.5 wt %). Silica and water content was kept constant. It’s concluded that the castables containing the optimum amount of silica sol shows remarkable increase in both castable fluidity and mechanical strength (CCS and MOR) in dried and sintered state. It was also found that nanosilica particles increase the rate of needle-shaped mullite formation during sintering at 1400°C. According to FTIR results, the addition of Calcium Aluminate Cement (CAC) to the silica sol may be responsible for the increment of siloxane bridges (Si-O-Si).
M. S. Saghian, R. Naghizadeh, H. Sarpoolaky,
Volume 10, Issue 2 (6-2013)
Abstract

In this study, the effect of different parameters such as time and temperature of calcination and milling on the formation of calcium aluminosilicates was investigated. Raw materials used in this study were calcium carbonate and kaolin in high purity. Powder X-ray diffraction patterns were obtained from all samples after heat treatment at various temperatures and times. To study the microstructure scanning electron microscope was used. Milling the samples contributed to the amorphous structure due to inducing defects in the structure. Moreover, increasing the milling time reduced crystallization temperature of anorthite. Uptake experiments were performed using solutions containing different concentrations of nickel. Samples were exposed to the solution for 24 h with stirring then the samples were filtered and the concentrations of the cations in the separated solutions were analyzed. FTIR analysis was conducted on the adsorbents before and after nickel uptake. Nevertheless, they hardly helped understand sorption mechanisms. Therefore, adsorption isotherms were studied instead. Three adsorption isotherms of Langmuir, Freundlich and DKR were used to model sorption data. Results suggested monolayer sorption occurs on the surface of the adsorbent and sorption energy calculated by DKR model was 22.36 kJ/mol which can be described as a strong chemical adsorption mechanism
H. Safabinesh, A. Arab Fatideh, M. Navidirad, M. Ghassemi Kakroudi,
Volume 11, Issue 3 (9-2014)
Abstract

In order to improve the corrosion resistance of aluminosilicate refractories by molten aluminum, alkaline fluoride NaF and cryolite Na3AlF6 powders were studied. Both physical and chemical properties are known to influence wetting and corrosion behavior. This paper devoted to determine the influence of alkaline fluoride and cryolite added to andalusite based castable on the reaction with aluminum alloys. These additives led to the in-situ formation of celsian phases within the refractory matrix that led to improved corrosion resistance at 1300°C. Phase analysis revealed that celsian formation suppressed the formation of mullite within refractories, thereby reducing Penetration
H. R. Sobhani Kavkani, A. Mortezaei, R. Naghizadeh,
Volume 13, Issue 2 (6-2016)
Abstract

Different mineral admixtures of Indian metakaolin, Iranian silica fume and nanosilica were used to produce high performance mortars. Two different sands types with grain size of 0.015-4mm were mixed with type II Portland cement, polycarboxylate superplasticizer,mineral admixture with 650kg/m3 cement content and water/cement ratio of 0.35. Different amount of cement was replaced by metakaolin or silica fume (5-15wt%) or nanosilica (0.8-5wt%). After mixing, moulding and curing, compressive strength, electrical resistivity and abrasion resistance were studied. The maximum compressive strength of 28 days samples were 76MPa, 79MPa and 75MPa for 15wt% substitution of cement with metakaolin, silica fume and 5wt% with nanosilica. The compressive strength of these samples showed 28%, 33% and 26% increment in comparison with reference sample, respectively. X-ray patterns showed that replacing silica fume leads to reduction of Portlandite (Ca(OH)2) phase. This can be attributed to the pozzolanic reaction and formation of new hydrated calcium silicate phase (CSH) that caused improvement of strength of admixtures containing samples. The microstructure of silica fume containing sample also showed better bond between sand and matrix. The electrical resistivity of samples with 15wt% metakaolin or silica fume and 5wt% nanosilica reach to 21kΩ.cm, 15 kΩ.cm and 10kΩ.cm, respectively. These samples showed high durability and corrosion resistance relative to reference samples (3.4 kΩ.cm). The abrasion resistance of different admixtures, specially silica fume containing samples were improved.

AWT IMAGE


G. Maghouli, B. Eftekhari Yekta,
Volume 15, Issue 1 (3-2018)
Abstract

Commercial dental lithium disilicate based glass-ceramics containing various amounts of P2O5 were synthesized. Regarding the crystallization behavior and physico-chemical properties of the glasses, the optimum percent of P2O5 was determined.as 8 %wt.
Crystallization behavior of the glasses was investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). The micro-hardness and chemical resistance of both glass and glass-ceramic searies were also determined.
According to our results, lithium phosphate was precipitated prior to crystallization of the main phases, i.e lithium meta silicate and lithium disilicate. This early precipitation led to evacuation of residual glass phase from lithium ions, which caused increasing the viscosity of glass and so shifting of crystallization to higher temperatures.
In addition, increasing in P2O5 amounts and consequently increasing in Li3PO4, led to significant decrease in the crystallite size and aspect ratio  of crystals.
Furthermore, while the chemical resistance of the glasses was decreased with P2O5, it was increased with P2O5 after heat treatment process.
The chemical solubility of these three glass-ceramics was between 2080~1188 μg/cm2.

F. Salehtash, H. Banna Motejadded Emrooz, M. Jalaly,
Volume 15, Issue 2 (6-2018)
Abstract

Mesoporous SiO2 nanopowder was synthesized under an acidic condition by a sol-gel method using various amounts of cetyltrimethyl ammonium bromide (CTAB) as structure directing agent. The samples were investigated with XRD, SEM, FTIR, TEM and N2 absorption-desorption analysis. Also, the incremental effect of surfactant were examined. The results obtained from the analysis suggested that an increase in the amount of surfactant resulted in increasing specific surface area, pore size and pore volume, of the synthesized particles up to 549 m2.g-1, 17.3 nm, and 2 cm3.g-1, respectively. Absorption behavior of the mesoporous silica was investigated for degradation of methylene blue pigments (MB) in aqueous solutions. The samples SC0, SC0.5 and SC1 showed the maximum absorption capacities of 333, 454 and 526 mg/g, respectively
V. Tajer Kajinebaf, M. Zarrin Khame-Forosh, H. Sarpoolaky,
Volume 17, Issue 1 (3-2020)
Abstract

In this research, the nanostructured titania-coated silica microsphere (NTCSM) membrane consisting of titania-silica core-shell particles on α–alumina substrate was prepared by dip-coating method. The silica microspheres were synthesized by the Stöber method, and the nanostructured titania shell was obtained from a polymeric sol. Then, the prepared core-shell particles were deposited on alumina substrates. The samples were characterized by DLS, TG-DTA, XRD, FTIR and SEM. The photo-catalytic activity of the NTCSM membranes was evaluated using photo-degradation of methyl orange solution by UV–visible spectrophotometer. Also, physical separation capability was investigated by filtration experiment based on methyl orange removal from aqueous solution using a membrane setup. The mean particle size distribution of silica microspheres was determined to be about 650 nm that by deposition of titania nano-particles increased up to about 800 nm. After 60 min UV-irradiation, the dye removal efficiency was determined to be 80% by the membrane. By coupling separation process with photo-catalytic technique, the removal efficiency was improved up to 97%. Thus, the NTCSM membranes showed simultaneous photo-degradation and separation capabilities for dye removal from water.
 
N. Akhlaghi, G. Najafpour, M. Mohammadi,
Volume 17, Issue 4 (12-2020)
Abstract

Modification of MnFe2O4@SiO2 core-shell nanoparticles with (3-aminopropyl) triethoxysilane (APTES) was investigated. The magnetite MnFe2O4 nanoparticles with an average size of ~33 nm were synthesized through a simple co-precipitation method followed by coating with silica shell using tetraethoxysilane (TEOS); that has resulted in a high density of hydroxyl groups loaded on nanoparticles. The prepared MnFe2O4@SiO2 nanoparticles were further functionalized with APTES via silanization reaction. For having suitable surface coverage of APTES, controlled hydrodynamic size of nanoparticles with a high density of amine groups on the outer surface, the APTES silanization reaction was investigated under different reaction temperatures and reaction times. Based on dynamic light scattering (DLS) and zeta potential results, the best conditions for the formation of APTES-functionalized MnFe2O4@SiO2 nanoparticles were defined at a reaction temperature of 70 °C and the reaction time of 90 min. The effectiveness of our surface modification was established by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). The prepared magnetite nanostructure can be utilized as precursors for synthesizing multilayered core-shell nanocomposite particles for numerous applications such as medical diagnostics, drug, and enzyme immobilization, as well as molecular and cell separation.
Puneeth Puneeth, Gangarekaluve J. Naveen, Vishwanath Koti, Nitrahalli D. Prasanna, Litton Bhandari, Javaregowda Satheesh, Parthasarathy Sampathkumara,
Volume 19, Issue 1 (3-2022)
Abstract

Hybrid composite finds wide application in various fields. In this present study, the hybrid composites are developed using stir casting technique as per Taguchi’s L9 orthogonal array. Hybrid composites were fabricated using Aluminium Al6082 as the base material and reinforced with the combinations of reinforcements Al2SiO5 and B4C at three levels (4%, 8% and 12%).The developed composites were analyzed for micro structural  investigations and mechanical tests were done as per ASTM standards. The micro structural analysis was done using optical Microscope and Scanning electron microscope while composition studies were done using X-ray diffraction and EDAX. Mechanical test like tensile, impact and flexural were conducted and their damage assessment was done using Scanning electron microscope. The fatigue characteristics like high cycle fatigue and fatigue crack propagation was studied both experimentally and numerically. The experimental data and numerical modeling analysis data obtained for the hybrid composite system, agree with each other.           
Pooyan Soroori, Saeid Baghshahi, Arghavan Kazemi, Nastaran Riahi Noori, Saba Payrazm, Amirtaymour Aliabadizadeh,
Volume 19, Issue 3 (9-2022)
Abstract

The goal of the present study is to prepare a room temperature cured hydrophobic and self-cleaning nano-coating for power line insulators. As a result, the installed insulators operating in power lines can be coated without being removed from the circuit and without the need to cut off power. For this purpose, hydrophobic silica nanoparticles were synthesized by sol-gel method using TEOS and HMDS. The synthesized hydrophobic silica nanoparticles were characterized by XRD, FTIR, SEM, and TEM analyses to investigate phase formation, particle size, and morphology. Then the surface of the insulator was cleaned and sprayed by Ultimeg binder solution, an air-dried insulating coating, as the base coating. Then the hydrophobic nano-silica powder was sprayed on the binder coated surface and left to be air-cured at room temperature. After drying the coating, the contact angle was measured to be 149o. Pull-off test was used to check the adhesion strength of the hydrophobic coating to the base insulator. To evaluate the effect of environmental factors, UV resistance and fog-salt corrosion tests were conducted. The results showed that 150 hours of UV radiation, equivalent to 9 months of placing the samples in normal conditions, did not have any significant effect on reducing the hydrophobicity of the applied coatings.
S. M. Alduwaib, Muhannad M. Abd, Israa Mudher Hassan,
Volume 19, Issue 3 (9-2022)
Abstract

Background: Superhydrophobic materials which have contact angle higher than 150°, considering their widespread applications, are very important for researchers.
Method: In this research, silica nanopowder was synthesized successfully using inexpensive sodium silicate source and very simple and facile method. Synthesis of hydrophobic solution was carried out by sol-gel method. The surface modification of silica nanopowder was performed using different silane/siloxane polymers and was deposited on glass slides. For characterization of the samples XRD, FESEM, EDX, TEM, FTIR, and Raman analysis were used.
Results: The XRD result shows a very wide peak at 2q = 24.7° which indicates the amorphous nature of the silica particles. The results of the performed characteristics confirm the synthesis of silica nanopowder with the size of less than 25 nm. The EDX spectrum shows that only Si and O elements are present in the structure and no impurities are visible. The contact angle between water droplet and thin films was measured and the effect of different synthesis parameters on the contact angle was studied. Among the studied polymers and solvents, the most hydrophobicity was obtained using TMCS polymer and xylene solvent. The optimized sample has a maximum contact angle of 150.8°.
Conclusion: The synthesized thin films have superhydrophobic properties and the method used in this research can be developed for use in industrial applications.
Amirreza Sazvar, Seyed Mohammad Saeed Alavi, Hossein Sarpoolaky,
Volume 20, Issue 2 (6-2023)
Abstract

We report a simple and practical approach for the easy production of superhydrophobic coatings based on TiO2-SiO2@PDMS. In this study, we used tetraethylorthosilicate (TEOS) and titanium tetraisopropoxide (TTIP) as a precursor for the sol-gel synthesis of SiO2 and TiO2, respectively. Afterward, the surface of nanoparticles was modified by 1,1,1,3,3,3-hexamethyldisilazane (HMDS) before being combined with polydimethylsiloxane (PDMS). The hydrophobic property of coatings was evaluated by static contact angle measurements. The phase composition and structural evolution of the coatings were examined by X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. It was shown that changing the weight ratio of the solution composition of the coating can affect the hydrophobicity of the surface. The best sample has shown a superhydrophobic property with a 153˚ contact angle which contained (75%TiO2-25%SiO2) and PDMS at a weight ratio of 1:1. Moreover, the results showed that the superhydrophobic coating retains its hydrophobic properties up to a temperature of 450 ˚C, and at higher temperatures, it converts to a super hydrophilic with a water contact angle close to 0 ˚. The SiO2-TiO2@PDMS coating degrades methylene blue by about 55% and was shown to be capable of photocatalytically decomposing organic pollutants.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb