Search published articles


Showing 2 results for Plasticizer

N. Maragani, K. Vijaykumar,
Volume 14, Issue 4 (12-2017)
Abstract

Ion conducting gel polymer electrolytes based on poly acrylonitrle (PAN) complexed with different weight percent ratios of Sodium Fluoride (NaF) salt were prepared by using solution cast technique. Structural characterization was performed using X-ray diffraction (XRD) technique and Fourier transforms infrared (FTIR) spectroscope technique. From the X-rd results increase in amorphous phase with the increase of dopant salt concentration was observed. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the complexation of the salt with the polymer matrix.  Electrical conductivity was measured that the magnitude of ionic conductivity increased with the increase in the salt concentration as well as temperature. The surface morphology was observed by using Scanning Electron Microscope (SEM), the optical band gap measured from UV-Vis Spectroscopy. The sample containing 30 wt% of NaF exhibited the highest conductivity of 1.82x10-4 S cm-1 at 303K and 2.96x10-3 S cm-1 at 373K. The temperature dependence of ionic conductivity of these films followed Arrhenius relation. Transference number measurements were carried out to investigate the nature of the charge transport species in the polymer electrolyte systems. The transference number data showed that the charge transports in these systems are predominantly due to ions. Using these polymer electrolyte films, electrochemical cells were fabricated and their discharge characteristics were studied. Various cell parameters, such as open circuit voltage, short circuit current, power density and energy density were determined.

Ramin Dehghani, Seyed Mojtaba Zebarjad,
Volume 21, Issue 0 (3-2024)
Abstract

Acrylic resins are one of the most important thermoplastic resins used in various industries due to their significant properties. However, they are inherently brittle and addition plasticizers to them is very common. In this study, role of both Polyethylene Glycol (PEG) and Triacetin on the mechanical properties of acrylic resin have been investigated. To do so tensile test, bending and wear tests have been performed. To achieve the optimal mixture of plasticizers, a tensile test has been carried out, and the best percentage of the mixture has been determined. Subsequently, bending and wear tests were conducted, which showed a significant increase in the bending strength of the acrylic resin after the addition of plasticizers. Furthermore, it was found that the abrasion mechanism of the resin was significantly altered compared to its pure state.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb