Search published articles


Showing 2 results for Peo

Sh. Shahriari, M. Ehteshamzadeh,
Volume 10, Issue 1 (3-2013)
Abstract

Abstract: Plasma electrolytic oxidation (PEO) technique was used to prepare ceramic coatings on the casted aluminum alloys containing ~5 and ~9.5 wt.% Mg. The applied voltage was controlled at 450V and 550V for evaluating the effect of this main parameter, as well as, magnesium content of the substrate on the microstructure and electrochemical corrosion behavior after PEO treating. The results of X-ray diffraction confirmed formation of galumina and MgSiO3. It was found that higher applied voltage caused fewer and minor discharge channels which led to higher corrosion resistance. Also, increasing of magnesium content of the substrate caused decreasing of polarization resistance, which could be associated to the formation of MgSiO3.
Amirhossein Kazemi, Arash Fattah-Alhosseini, Maryam Molaei, Meisam Nouri,
Volume 19, Issue 2 (6-2022)
Abstract

In this study, for the first time, the Forsterite (Mg2SiO4) nanoparticles (NPs) with the size of about 25 nm were added to the phosphate-based electrolyte, and the characteristics and properties of the obtained plasma electrolytic oxidation (PEO) coating on AZ31 Mg alloy was investigated. The results of the potentiodynamic polarization measurements revealed that after one week of exposure to simulated body fluid (SBF) solution, the coating with Mg2SiO4 NPs possessed 12.30 kΩ cm2 polarization resistance, which was more than two times greater than that of the coating without NPs. The thicker coating layer, lower wettability, and also presence of Mg2SiO4 NPs inside the pores were responsible for enhanced corrosion protection in the Mg2SiO4 NPs incorporated coating. After three weeks of immersion in SBF solution, the in-vitro bioactivity test results indicated the ability of the NPs-containing coating to form apatite (Ca/P ratio of 0.92) was weaker than the coating without NPs (Ca/P ratio of 1.17). This could be attributed to the lower wettability of the coating with NPs and supports that the addition of the nanoparticles is not beneficial to the bioactivity performance of the coating. 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb