Search published articles


Showing 4 results for Infiltration

S. Safi, R. Yazdani Rad, A. Kazemzade, Y. Safaei Naeini, F. Khorasanizadeh,
Volume 9, Issue 2 (6-2012)
Abstract

C-SiC composites with carbon-based mesocarbon microbeads (MCMB) preforms are new type of highpreformance and high-temperature structural materials for aerospace applications. In this study MCMB-SiC composites with high density (2.41 g.cm-3) and high bending strength (210 MPa,) was prepared by cold isostatic press of mixed mesophase carbon powder derived from mesophase pitch with different amount (0, 2.5, 5%) nano SiC particles. All samples were carbonized under graphite bed until 1000 °C and finally liquid silicon infiltration (LSI). Microstructure observations resultant samples were performed by scanning electron microscopy and transition electron microscopy (SEM & TEM). Density, porosity and bending strength of final samples were also measured and calculated. Results indicates that the density of samples with nano additive increased significantly in compare to the free nano additives samples.
N Parvin, R Derakhshandeh Haghighi, M Naeimi, R Parastar Namin, M. M. Hadavi,
Volume 11, Issue 4 (12-2014)
Abstract

In this research, infiltration behavior of W-Ag composite compacts with Nickel and Cobalt as additives has been investigated. Nickel and Cobalt were added to Tungsten powder by two distinct methods: mixing elementally and reduction of salt solution. The coated Tungsten powders were compacted under controlled pressures to make porous skeleton with 32-37 vol. % porosity. Infiltration process was carried out at 1100 ̊C under a reducing atmosphere for 1h. The effect of additives on infiltration of Ag and density were evaluated by SEM and Archimedes methods. Properties of the specimens were compared following two distinct processes namely: I) sintering simultaneously with infiltration process and II) sintering prior to infiltration (pre-sintering process). It was found that specimens which were pre-sintered and then infiltrated with molten silver represent higher hardness and finer microstructure than the specimens infiltrated simultaneously with sintering.
F. Torknik, M. Keyanpour-Rad, A. Maghsoudipour, G. M. Choi,
Volume 13, Issue 1 (3-2016)
Abstract

In order to further enhance the Ni/Ce 0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance for low temperature solid oxide fuel cell (LT-SOFC), a study was conducted on the nanostructuring of NiO/GDC composite by only once wet-infiltration of rhodium chloride precursor. By using electrochemical impedance spectroscopy (EIS) analysis, the effect of only one drop of Rh-infiltrating solution on the anodic polarization resistance was examined using symmetric Ni–GDC20|GDC20|Pt electrolyte-supported cell at 400-600 °C. Nanostructural evolution before and after H 2 reduction at 600 °C and also after anodic performance test was investigated by atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques in comparison to the anode itself. Despite the fine distribution of Rh-infiltrated nanoparticles having average particle size of 11.7 nm, the results showed ineffectiveness and inability of the Rh nanoparticles to succeed in decreasing of anodic polarization resistance for H 2 oxidation reaction in LT-SOFC.

AWT IMAGE


S. Borji, K. Zangeneh-Madar, M. Ahangarkani, Z. Valefi,
Volume 14, Issue 1 (3-2017)
Abstract

In this paper the feasibility of fabricating controlled porous skeleton of pure tungsten at low temperature by addition of submicron particles to tungsten powder (surface activated sintering) has been studied and the best parameters for subsequent infiltration of Cu were acquired. The effects of addition of submicron particles and sintering temperature on porous as well as infiltrated samples were studied. The samples were examined by scanning electron microscopy (SEM), Vickers hardness measurements and tensile test. The composites made have been investigated and revealed the making W-Cu composite with good density, penetrability, hardness and microstructure. Consequently, the sintering temperature was reduced considerably (Ts≤1650oC) and a homogeneous porous tungsten was obtained. Also, composite prepared by this method exhibited elongation about 28% that is much more than conventional W-15%wt Cu composites. This method of production for W–Cu composites has not been reported elsewhere



Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb