Search published articles


Showing 3 results for Boron Carbide

E. Shaker, M. Sakaki, M. Jalaly, M. Bafghi,
Volume 12, Issue 4 (12-2015)
Abstract

B4C–Al2O3 composite powder was produced by aluminothermic reduction in Al/B2O3/C system. In this research, microwave heating technique was used to synthesize desired composite. The ball milling of powder mixtures was performed in order to study the effect of mechanical activation on the synthesis process. The synthesis mechanism in this system was investigated by examining the corresponding binary sub-reactions. The self-sustaining reduction of boron oxide by Al was recognized to be the triggering step in overall reaction.


P. Amin, A. Nourbakhsh, P. Asgarian, R. Ebrahimi Kahrizsangi,
Volume 13, Issue 3 (9-2016)
Abstract

In this study, Boron carbide was synthesized using Mesoporous Carbon CMK-1, Boron oxide, and magnesiothermic reduction process. The Effects of temperature and magnesium grain size on the formation of boron carbide were studied using nano composite precurser containg mesoporous carbon. Samples were leached in 2M Hydrochloric acid to separate Mg, MgO and magnesium-borat phases. SEM, XRD and Xray map analysis were caried out on the leached samples to characterize the  boron carbide. results showed that the reaction efficiency developed in samples with weight ratio of B2O3:C:Mg = 11:1.5:12, by increasing the temperature from 550 to 650 °C and magnesium powder size from 0.3 m to 3 m.


Puneeth Puneeth, Gangarekaluve J. Naveen, Vishwanath Koti, Nitrahalli D. Prasanna, Litton Bhandari, Javaregowda Satheesh, Parthasarathy Sampathkumara,
Volume 19, Issue 1 (3-2022)
Abstract

Hybrid composite finds wide application in various fields. In this present study, the hybrid composites are developed using stir casting technique as per Taguchi’s L9 orthogonal array. Hybrid composites were fabricated using Aluminium Al6082 as the base material and reinforced with the combinations of reinforcements Al2SiO5 and B4C at three levels (4%, 8% and 12%).The developed composites were analyzed for micro structural  investigations and mechanical tests were done as per ASTM standards. The micro structural analysis was done using optical Microscope and Scanning electron microscope while composition studies were done using X-ray diffraction and EDAX. Mechanical test like tensile, impact and flexural were conducted and their damage assessment was done using Scanning electron microscope. The fatigue characteristics like high cycle fatigue and fatigue crack propagation was studied both experimentally and numerically. The experimental data and numerical modeling analysis data obtained for the hybrid composite system, agree with each other.           

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb