Search published articles


Showing 63 results for Ai

Golmahalleh O., Zarei-Hanzaki A.,
Volume 1, Issue 1 (3-2004)
Abstract

In principal, a proper combination of strength and ductility is achieved through micro component refinement in steels. This is particularly empowered with ferrite refinement down to micron sizes in ferrite pearlite engineering steels. The latter is achieved through various well-defined methods in which strain induced transformation (SIT) has shown spectacular capabilities. In the present study, to address the effect of thermo mechanical processing parameters on the (SIT) behavior, two plain carbon steels were studied through single pass rolling. This was carried out at the corresponding Ar_3 + 20°C temperature of the steels. The results indicated that the transformation behavior and ferrite morphology would be .strongly influenced by both the chemical composition (i.e., carbon content) and the amount of applied strain. Furthermore, a high volume fraction of very fine ferrite with mean grain size of less than 2 µm was obtained. This was attributed to the ferrite nucleation at deformation bands and serrated austenite grain boundaries.
Saghafian Larijani H., Rainforth W. M.,
Volume 1, Issue 3 (9-2004)
Abstract

An AI-7wt%Si-5vol%TiCp was worn against a cast iron disc in a tri-pin-on-disc machine, under dry sliding conditions at the sliding speed of 0.24 m/s and applied loads of 6, 20 and 40 N/pin. Stress-strain (σ-ε) curves were constructed by measuring the microhardness and the equivalent strain gradients in near surface regions on the cross-sectional surface prepared parallel to sliding direction.It was shown that, both the magnitude of plastic strains and the depth of plastic deformed zones increased with the applied load. The material exhibited considerable work softening in addition to work hardening at the highest applied load. The softened layer placed just beneath the mechanical mixed layer (MML), was mostly covered with the fine fractured eutectic Si and TiC fragments most of which were associated with microcracks at Al/Si and Al/TiC interfaces. The results were discussed in terms of some of the current work hardening models.
Attar E., Babaei R., Homayonifar P., Asgary K., Davami P.,
Volume 1, Issue 4 (12-2004)
Abstract

During mold filling, molten metal can only advance as quickly as the air inside thecavity is expelled. In this work an analytical model describing air flow is developed based on aincompressible flow theory. Air pressure has serious effects upon the filling behaviour such assurface profile and filling time. In this work a new mathematical model is proposed for calculationthe air pressure during the mold filling. A single phase computational fluid dynamic code based onthe SOLA-VOF algorithm used for prediction the fluid flow. Air discharged through the vents ismodelled by ideal gas assumption, conservation of mass equation and Bernoulli law. A newalgorithm was developed to interpolates the air pressure on the surface cell. The creation of airback pressure was correlated with sizes of vents and pouring basin height. In order to verify thecomputational results a series of experimental test was conducted. Comparison between theexperimental data and simulation results has shown a good agreement.
Dehghan Manshadi A., Zarei Hanzaki A., Golmahalleh O.,
Volume 2, Issue 2 (6-2005)
Abstract

The presence of bainite in the microstructure of steels to obtain a proper combination of strength and toughness has always been desired. The previous works however have shown that the presence of preferred bainite morphologies in the microstructure of any steel would not be readily accessible. In addition, the appearance of different bainite morphologies in the microstructure of any steel is dictated by different factors including the steel initial microstructure, austenitization characteristics, thermomechanical processing parameters and so on. Accordingly, in the present work, the effect of prior austenite grain size and the amount of austenite hot deformation on the bainite formation characteristics were investigated in 0.12C-2.5 Ni-1.2Cr steels. The results indicated that the prior austenite grain size and the amount of deformation in the austenite no-recrystallization region resulted in significant changes of the bainite formation kinetics and morphology.
Moayed M.h.,
Volume 2, Issue 3 (9-2005)
Abstract

In this research pitting Corrosion of a sensitized 316 stainless steel was investigated employing potentiodynamic, potentiostatic techniques. Sensitization process was carried out on as-received alloy by submitting the specimen in electric furnace set at 650°Cfor five hours and then the specimen was quenched 25°C water. Potentiodynamic polarization of as received and sensitized specimens in 1M H2SO4 solution at room temperature and 70°C clearly revealed that the sensitization process has caused a magnificent change on electrochemical behavior of the specimen by changing critical current density for passivation, passivation potential and passive current density. Optical microscopy examination of the specimen surface after oxalic acid electrochemical etching also showed the deterioration of grain boundary of sensitized specimen due to chromium carbide precipitation in compared to as-received one. Several anodic potentiodynamic polarization on rode shaped working electrodes prepared from as-received and sensitized specimen in 3.5% NaCl test solution proved an average ~220 mV drop in pitting potential due to sensitization. Anodic potentiostatic polarization at 400 and 200 mV above corrosion potential also demonstrate the deterioration of pitting resistance of alloy as a result of sensitization. Scanning electron microscopy examination of anodically polarized of sensitized specimen at 700mVprior and after oxalic acid etching revealed large stable pits with lacy cover and also openpits with deep crevice for etched specimens.
Nouroozi S., Vardelle A.,
Volume 2, Issue 4 (12-2005)
Abstract

In wire arc spraying, the atomizing air pressure and applied nozzle system are important factors influencing particles characteristics and coating quality. The aim of this paper is to study how the characteristics of particles such as size, velocity and temperature are influenced by the operating conditions in wire arc spray. For that, three types of wires are tested: solid wire of stainless steel 316L, cored wires 97MXC and 98MXC. Arc spray gun is an Arc Jet 9000 manufactured by TAFA. For each condition, the particles temperature and particles velocity are measured using an imaging CCD camera, Spray Watch (Oseir Ltd). Particles size distributions are determined with a laser grain meter. The morphology and composition of particles were evaluated with SEM, EDX and X-Ray diffraction. Results induce important modifications in the particles size distributions and particles velocity. A small diameter nozzle and high atomizing air pressure resulted in a reduction in particles size distributions and an increase in particles velocity.
Abbasi S.m., Shokouh Far A., Ehsani N.,
Volume 3, Issue 3 (12-2006)
Abstract

In this study the hot deformation behaviour of a precipitation hardened (PH) stainless steel at high strain rates has been predicted through hot compression testing. Stress-strain curves were obtained for a range of strain rates from 10-3 to 10+1 S-1 and temperatures from 850 to 1150°C. Results obtained by microstructure and stress-strain curves show that at low temperatures and high strain rates, where the Zener-Holman parameter (Z) is high, work hardening and dynamic recovery occure. By increasing temperature and decreasing strain rate, the Z parameter is decreased, so that dynamic recrystallization is the dominant softening mechanism. The results were fitted using a Log Z versus Log (sinh (a sp) diagram allowing an assessment of the behavior of the stresses measured at strain rates closer to those related to the industrial hot rolling schedules. It is clearly shown that the data collected from low strain rate testing can be fairly reasonably extrapolated to higher orders of magnitude of strain rate.
Ebrahimi A.r., Yadegari M., Khosroshahi R.a.,
Volume 3, Issue 3 (12-2006)
Abstract

In this study, commercially pure titanium/304L stainless steel explosion bonded clads have been annealed under argon atmosphere over the temperature range of 700-900°C for 1h.Microstructure of the clads have been investigated before and after anealing. X-ray diffraction studies revealed that the annealing products in the form of intermetallic phases were gradually formed at the interface of the annealed clads. It was also found that, the bonding zone width increased with temperature according to an Arrhenius type equation. On the base of this equation, the activation energy of bonding zone growth was found equal to about 66.5 kJ/mol. The bond strength of the diffusion annealed clads were evaluated stress relieved. The maximum average tensile strength of ~350MPa was obtained for the as-welded clad. It was found that the bond strength decreased with annealing at 700°C due to an increase in the width of brittle intermetallic layer.
Oprea G.,
Volume 3, Issue 3 (12-2006)
Abstract

Although the flash smelting technologies use different furnace designs, the refractory linings are exposed to very similar aggressive environments and, as a result, the corrosion analysis results on one type of furnace could be generally applied to other furnaces of similar high temperature processes. Particularities regarding the different chemistries of the pyrometallurgical process and operating parameters of these furnaces could also bring particular aspects to be considered when analyzing the refractory ware and final failure in use. This paper presents a review of the existent experimental. data of corrosion analyses on refractory linings used in two particular flash furnaces for zinc-lead and respectively nickel-copper smelting. Although various modern water cooling systems are generally used to protect the refractory wall linings against corrosion by molten slag and matte, the performance of the refractory roof lining, usually used without water cooling, represents a permanent concern and the object of research studies to extend their life in service. The failure mechanisms analysed in this study are based on postmortem analyses and laboratory corrosion experiments with magnesite-chrome bricks of different chemical and mineralogical compositions. The gaseous atmosphere, usually rich in SO2 and/or CO and various metal fumes, produces irreversible microstructural changes which could shorten the life in service of the refractory lining. The experimental data proved that thermal cycling in SO2/SO3 atmospheres could bring more damage than a continuous use at relatively constant temperature, due to the magnesium and calcium sulphate formation. The laboratory experiments and postmortem analyses showed that that metal fumes at various partial pressure of oxygen would condense as oxides and react inside the pores and at the grain boundaries, contributing to the continuous deterioration of the ceramic matrix of the refractory brick lining. The mechanisms of corrosion, discussed based on laboratory experiments, were confirmed by the postmortem analyses on brick samples used in the industrial flash smelting furnaces.
A. Razaghian, T. Chandra2,
Volume 4, Issue 1 (6-2007)
Abstract

Abstract: Static recrystallization (SRX) behavior of a composite based 7075 Aluminum alloy reinforced with SiC particles was studied during annealing the deformed samples at high temperatures. The results showed an absence of SRX in the samples annealed after hot working at the same deformation temperature, however, a rise in annealing temperature of 100-1500 􀁱C above that the deformation temperature led to full recrystallization. This can be ascribed to the relatively moderate dynamic recovery and the presence of dispersions which stabilize the substructure. Particle stimulated nucleation (PSN) had a significant effect on the grain size in deformed samples at low temperature, but no PSN was observed in samples strained at high temperatures. The possible cause might be that at high temperature the dislocations can be annihilated by climb process around the particles together with the absence of deformation zone for nucleating the recrystallization.
K. Ghadarghadr Jahromi, , A. Zarei-Hanzaki, O. Golmahalleh,
Volume 5, Issue 1 (3-2008)
Abstract

Abstract: In the present investigation, the effects of thermomechanical processing parameters and the steel chemical composition on the ultra fine ferrite formation characteristics were studied. This was programmed relying on the capabilities of strain induced transformation (SIT) phenomenon and applying to different grades of Si-Mn TRIP (Transformation Induced Plasticity) steels. Accordingly, wedge shaped specimens were rolled at two different temperatures, above and below the austenite-to-ferrite transformation temperature (Ar3). An ultra fine ferrite grain size, in the scale of some hundred nanometers, was obtained by rolling the specimens with lower Si content at a temperature below the related Ar3 temperature. The amount of reduction, which was resulted in the latter microstructure, was realized to be about 55%.
A. Hassani, R. Ravaee,
Volume 5, Issue 2 (6-2008)
Abstract

Abstract: To ensure the rail transportations safety, evaluation of fatigue behavior of the rail steel is necessary. High cycle fatigue behaviour of a rail steel was the subject of investigation in this research using fracture mechanics. Finite element method (FEM) was used for analyzing the distribution of the stresses on the rail, exerted by the external load. FEM analysis showed that the maximum longitudinal stresses occurred on the railhead. To find out about the relation of crack growth with its critical size, and to estimate its lifetime, the behaviour of transverse cracks to rail direction was studied using damage tolerance concept. It revealed that transverse crack growth initially occurred slowly, but it accelerated once the crack size became larger. Residual service life was calculated for defective segments of the rails. In addition, allowable crack size for different non-destructive testing intervals was determined the allowable crack size decreased as the NDT intervals increased.
H. Naffakh,, M. Shamanian, F. Ashrafizadeh,
Volume 5, Issue 3 (9-2008)
Abstract

Abstract: The investigation is carried out to characterize welding of AISI 310 austenitic stainless steel to Inconel 657 nickel-chromium superalloy. The welds were produced using four types of filler materials: the nickel-based corresponding to Inconel 82, Inconel A, Inconel 617 and austenitic stainless steel 310. This paper describes the effects of aging treatment on the joint. The comparative evaluation was based on microstructural features and estimation of mechanical properties. While Inconel A exhibited highest thermal stability and mechanical properties (hardness and ultimate strength), Inconel 82 weld metal also showed good thermal stability and mechanical properties. On the other hand, welds produced with Inconel 617 and 310 SS filler materials showed weak thermal stability and failed in the weld metals. It is therefore concluded that for the joint between Inconel 657 and 310 stainless steel, Inconel A and Inconel 82 filler materials offered the best compromises, respectively.
A. Poladi, M. Zandrahimi,
Volume 5, Issue 3 (9-2008)
Abstract

Abstract: Austenitic stainless steels exhibit a low hardness and weak tribological properties. The wear behaviour of austenitic stainless steel AISI 316 was evaluated through the pin on disc tribological method. For investigating the effect of wear on the changes in microstructure and resistance to wear, optical microscopy and scanning electron microscope were used. The hardness of the worn surfaces was measured with a micro-hardness tester. Worn surfaces were analyzed through X-ray diffraction. Results showed that with increasing the sliding distance and applied load, the austenite phase partially transformed to ά martensite, and there was no trace of ε phase detected. Due to the formation of probably hard and strong martensite phase, as the sliding distance and applied load increased, the hardness and the wear resistance of the material was increased. Wear mechanism was on the base of delamination and abrasion.
A.nouri, Sh.kheirandish, H. Saghafian,
Volume 5, Issue 4 (12-2008)
Abstract

Abstract: In the current work, the strain hardening behavior of dual-phase steels with different silicon content (0.34- 2.26 Wt. %) was examined using the modified Crussard-Jaoul analysis. It was shown that these dual-phase steels deform in two stages over a uniform strain range. Each stage exhibited a different strain hardening exponent varying with silicon content. At the first stage, work hardening exponent remind significantly constant, while during the second stage, it decreased with increasing silicon content from 0.34% to 1.51% and then increased for the higher silicon contents (1.51% to 2.26%). It was found that the strain hardening behavior of these steels was predominantly affected by the volume fraction of martensite at low silicon contet and the ferrite strengthening induced by silicon at the higher silicon content. The effect of silicon content on the volume fraction of martensite and tensile properties were also considered.
M. Mossanef, M. Soltanieh,
Volume 5, Issue 4 (12-2008)
Abstract

Abstract: The possibility of vanadium carbide coating formation on AISI L2 steel was studied in molten salt bath containing 33 wt% NaCl- 67 wt% CaCl2. In this research, the effects of time, temperature and bath composition on growing layer thickness were studied. The vanadium carbide coating treatment was performed in the NaCl-CaCl2 bath at 1173, 1273 and 1373 K temperatures for 3, 6, 9 hours and in bath containing 5, 10, 15, 25 wt% ferrovanadium. The presence of VC formed on the surface of the steel substrate was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analysis. The layer thickness of vanadium carbide and surface hardness ranged between 4.8 to 25.7 µm and 2645 to 3600 HV, respectively. The kinetics of layer growth was analyzed by measuring the depth of vanadium carbide layer as a function of time and temperature. The mean activation energy for the process is estimated to be 133 kJ/ mol.


M. Esmailian,
Volume 7, Issue 1 (3-2010)
Abstract

Abstract:

transformation temperature and different ferrite morphologies in one Nb-microalloyed (HSLA) steel has been

investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining

austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been

quenched, partially, for investigation on the microstructural evolution.

In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature

differences method (TDM) is established and found to be a good way for detection of austenite to ferrite, pearlite and

sometimes other ferrite morphologies transformation temperatures.

The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence

on decreasing of the ferrite transformation temperature.

Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain

boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases,

intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary

ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of

intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite

transformation temperature decreases and volume fraction of intragranular ferrite increases.

The effect of different austenite grain size and different cooling rates on the austenite to ferrite

Khodamorad Abbaszadeh, Shahram Kheirandish, Hassan Saghafian,
Volume 7, Issue 3 (8-2010)
Abstract

The effects of lower bainite volume fraction on tensile and impact properties of D6AC ultrahigh strength steel were studied in the current work. To obtain mixed microstructures containing martensite and different volume fractions of the lower bainite, specimens were austenitized at 910° C, then quenched in a salt bath of 330°C for different holding times, finally quenched in oil. In order to obtain fully martensitic and bainitic microstructures, direct oil quenching and isothermal transformation heat treatment for 24 hours were used respectively. All specimens were double tempered at 200°C for 2 hours per tempered. Microstructures were examined by optical and scanning electron microscopes. Fracture morphologies were studied by scanning electron microscopy (SEM). Results showed that both yield and ultimate tensile strength generally decreased with an increase in volume fraction of lower bainite. However, a few exceptions were observed in the mixed microstructures containing 12% lower bainite, showing a higher strength than the fully martensitic microstructure. This can be explained on the basis of two factors. The first is an increase in the strength of martensite due to the partitioning of the prior austenite grains by lower bainite resulting in the refinement of martensite substructures. The second is a plastic constraint effect leading to an enhanced strength of lower bainite by the surrounding relatively rigid martensite. Charpy V-notch impact energy and ductility is improved with increasing the volume fraction of lower bainite.
H. Momeni, H. Razavi, S. G. Shabestari,
Volume 8, Issue 2 (6-2011)
Abstract

Abstract: The supersolidus liquid phase sintering characteristics of commercial 2024 pre-alloyed powder was studied at different sintering conditions. Pre-alloyed 2024 aluminum alloy powder was produced via air atomizing process with particle size of less than 100 µm. The solidus and liquidus temperatures of the produced alloy were determined using differential thermal analysis (DTA). The sintering process was performed at various temperatures ranging from the solidus to liquidus temperatures in dry N2 gas atmosphere for 30 min in a tube furnace. The maximum density of the 2024 aluminum alloy was obtained at 610ºC which yields parts with a relative density of 98.8% of the theoretical density. The density of the sintered samples increased to the maximum 99.3% of the theoretical density with the addition of 0.1 wt. %Sn powder to the 2024 pre-alloyed powder. The maximum density was obtained at 15% liquid volume fraction for both powder mixtures.
M. S. Kaiser, A. S. W. Kurny,
Volume 8, Issue 4 (12-2011)
Abstract

Microstructure and properties of the Al-6Si-0.3Mg alloys containing scandium (0.2 to 0.6wt %) were investigated. The microstructure was observed by optical microscopy, the hardness was determined by Vickers tester and phase transformation was investigated by differential scanning calorimetry (DSC) technique. The results showed that scandium can refine dendrites, enhance hardness in the aged alloys and suppress softening effect during prolonged ageing treatment.

Page 1 from 4    
First
Previous
1
 

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb