Search published articles


Showing 146 results for Sit

S. Ghafurian, S. H. Seyedein, M. R. Aboutalebi, M. Reza Afshar,
Volume 8, Issue 3 (9-2011)
Abstract

Abstract: Microwave processing is one of the novel methods for combustion synthesis of intermetallic compounds and
composites. This method brings about a lot of opportunities for processing of uniquely characterized materials. In this
study, the combustion synthesis of TiAl/Al2O3 composite via microwave heating has been investigated by the
development of a heat transfer model including a microwave heating source term. The model was tested and verified
by experiments available in the literature. Parametric studies were carried out by the model to evaluate the effects of
such parameters as input power, sample aspect ratio, and porosity on the rate of process. The results showed that
higher input powers and sample volumes, as well as the use of bigger susceptors made the reaction enhanced. It was
also shown that a decrease in the porosity and aspect ratio of sample leads to the enhancement of the process.
A. Namiranian , M. Kalantar,
Volume 8, Issue 3 (9-2011)
Abstract

The process of mullitization of kyanite concentrate was studied at different conditions of heat treatment (1400
– 1600 °C and 0.5 – 3.5 hours) and particle size of raw materials (38-300 ?m). Kyanite concentrate was obtained from
ore-dressing of kyanite deposits of Mishidowan-Bafgh region at 100 km northeastern part of Yazd. The results of
microstructure (shape, distribution and size of the grains) and phase evolution studies by SEM and XRD showed that
total transformation of kyanite to mullite takes place by heat treatment between 1500 –1550 °C during 2.5 hours.. At
temperatures below 1500 °C need-like mullite grains are always produced. At higher temperatures the mullite grains
reveal rounded and platelet morphology. At 1550 °C, the rate of mullitization and densification were improved by
increasing soaking time from 1h to 3h and decreasing particle size of materials from 300 to 38 m
E. Najafi Kani, A. Allahverdi,
Volume 8, Issue 3 (9-2011)
Abstract

Shrinkage behavior of a geopolymer cement paste prepared from pumice-type natural pozzolan was studied
by changing parameters of chemical composition including SiO2/Na2O molar ratio of activator and total molar ratios
of Na2O/Al2O3, and H2O/Al2O3. For investigating the effect of curing conditions on shrinkage, hydrothermal curing
was also applied. The obtained results clearly revealed the governing effect of chemical composition on shrinkage.
Mixes with different Na2O/Al2O3 molar ratios exhibited different shrinkage behavior due to variations made in
SiO2/Na2O molar ratio. Application of hydrothermal curing after a 7-day period of precuring in humid atmosphere
also showed strong effect on shrinkage reduction.
S. Janitabar Darzi, A. R. Mahjoub, A. R. Nilchi, S. Rasouli Garmarodi,
Volume 8, Issue 4 (12-2011)
Abstract

TiO2/SiO2 nanocomposite with molar ratio 1:1 was synthesized by a free calcination sol-gel method using titanium tetra chloride and tetraethylorthosilicate as raw materials. In the composite, TiO2 nanocrystals are highly dispersed in the amorphous SiO2 matrix and the mater showed size quantization effect arising from the presence of extremely small titanium oxide species having a low coordination number. Thermal phase transformation studies of the as-prepared composite were carried out by means of X-ray diffraction (XRD) patterns and thermogravimetry–differential scanning calorimetry (TG–DSC) analyses. The studies showed existence of anatase phase in all the tested temperatures. When temperature exceeds 400°C, brookite phase was formed beside anatase phase. At 950°C amorphous silica matrix was transformed to crystobalite and brookite phase disappeared. Finally, small peaks of rutile phase were detectable at 1100°C.
P. Samadi, M. Reza Afshar, M. R. Aboutalebi, S. H. Seyedein,
Volume 9, Issue 1 (3-2012)
Abstract

Electrochemical coating processes are significantly affected by applied magnetic fields due to the generation of electromagnetic forces. The present research work has been undertaken to study the effect of coating parameters such as current density and alumina concentration on the characteristics of Ni-Al2O3 composite coating under static magnetic field. Ni-Al2O3 composite coating was applied on a mild steel substrate using conventional Watts solution containing Al2O3 particles with and without magnetic field. The coating microstructure and Al2O3 particle density in the coating layer were examined by scanning electron microscopy (SEM). It was found that the applied magnetic field made the coating structure finer and leads to the increases of the particle content in the coating. However, the results confirmed that the magnetic forces inversely affected the particle density in the coating at higher current density than that of normal coating process.


W. Orlowicz, M. Tupaj, M. Mróz, J. Betlej, F. Ploszaj,
Volume 9, Issue 1 (3-2012)
Abstract

Abstract: This study presents the research results of effect that refining process has on porosity and mechanical properties of high pressure die castings made of AlSi12S alloy. The operation of refining was carried out in a melting furnace with the use of an FDU Mini Degasser. Mechanical properties (UTS, YS, Elongation, Brinell Hardness) were assessed on samples taken from high pressure die castings. The effect of molten metal transfer operation and the time elapsing from completion of the refining process on the alloy mechanical properties was determined.
M. R. Zamanzad-Ghavidel,, K. Raeissi, A. Saatchi,
Volume 9, Issue 2 (6-2012)
Abstract

Abstract: Nickel was electrodeposited onto copper substrates with high {111} and {400} peak intensities. The grain size of coatings deposited onto the copper substrate with a higher {111} peak intensity was finer. Spheroidized pyramid morphology was obtained at low current densities on both copper substrates. By increasing the deposition current density, grain size of the coating was increased for both substrates and eventually a mixed morphology of pyramids and blocks was appeared without further increase in grain size. This decreased the anodic exchange current density probably due to the decrease of surface roughness and led to a lower corrosion rate.
S. Safi, R. Yazdani Rad, A. Kazemzade, Y. Safaei Naeini, F. Khorasanizadeh,
Volume 9, Issue 2 (6-2012)
Abstract

C-SiC composites with carbon-based mesocarbon microbeads (MCMB) preforms are new type of highpreformance and high-temperature structural materials for aerospace applications. In this study MCMB-SiC composites with high density (2.41 g.cm-3) and high bending strength (210 MPa,) was prepared by cold isostatic press of mixed mesophase carbon powder derived from mesophase pitch with different amount (0, 2.5, 5%) nano SiC particles. All samples were carbonized under graphite bed until 1000 °C and finally liquid silicon infiltration (LSI). Microstructure observations resultant samples were performed by scanning electron microscopy and transition electron microscopy (SEM & TEM). Density, porosity and bending strength of final samples were also measured and calculated. Results indicates that the density of samples with nano additive increased significantly in compare to the free nano additives samples.
Z. Shahri, S.r. Allahkaram,
Volume 9, Issue 4 (12-2012)
Abstract

Metal matrix composite coatings reinforced with nano-particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Cobalt/hexagonal boron nitride nano-composite coatings were prepared by means of the pulse current electroplating from a chloride electrolyte on copper substrates and a comparison was made with the pure cobalt in terms of structure and tribological properties. Effects of particles concentration (5-20 gL-1) and current density (50-200 mA cm-2) on the characterization of electroplated coatings were investigated via X-ray diffraction analysis, energy dispersive spectroscopy and Vickers micro-hardness. Moreover, the tribological behavior was studied using pin-on-disc method. The results showed that cobalt/hexagonal boron nitride nano-composite coatings have higher hardness, wear resistance and lower friction coefficient than pure cobalt and the plating parameters strongly affect the coating’s properties
F. Gulshan, Q. Ahsan,
Volume 10, Issue 2 (6-2013)
Abstract

The probable reasons for evolution of weld porosity and solidification cracking and the structure- property relationship in aluminium welds were investigated. Aluminium plates (1xxx series) were welded by Tungsten Inert Gas (TIG) welding process, 5356 filler metal was used and heat input was controlled by varying welding current (145A, 175A and 195A). The welded samples were examined under optical and scanning electron microscopes and mechanical tests were performed to determine tensile and impact strengths. Secondary phase, identified as globules of Mg2Al3 precipitates, was found to be formed. Solidification cracking appeared in the heat affected zone (HAZ) and porosities were found at the weld portion. The tendency for the formation of solidification cracking and weld porosities decreased with increased welding current.
H. R. Jafarian, E. Borhani,
Volume 10, Issue 2 (6-2013)
Abstract

In this research, variant selection of martensite transformed from ultrafine-grained (UFG) austenite fabricated by accumulative roll bonding (ARB) process and subsequent annealing was investigated with respect tomorphology of parentaustenitic phase. The results show that the original shape of austenite grain is very effective factor in determiningthe preferred variants of martensite transformed from the elongated ultrafine-grained austenite fabricated by 6-cycles via the ARB process. Annealing treatment of the austenitic samples subjected to the 6-cycle ARB processed at 873 K for 1.8 ks suppressed the variant selection by changing the morphology of austenite grains from elongated ultrafine-grains to fully-recrystallized and equiaxed fine-grains
J. Jac Faripour Maybody, A. Nemati, E. Salahi,
Volume 10, Issue 2 (6-2013)
Abstract

In the present study, bioceramic composites based hydroxyapatite (HAp) reinforced with carbon nanotubes (CNTs) was synthesized via sol-gel technique. The dried gels were individually heated at a rate of 5°C/min up to 600°C for 2 h in a muffle furnace in order to obtain HAp-MWCNTs mixed powder. Composites were characterized by XRD, FT-IR, SEM, TEM/SAED/EDX and Raman spectroscopy techniques. Results showed the synthesis of HAp particles in the MWCNTs sol which was prepared in advance, leads to an excellent dispersion of MWCNTs in HAp matrix. Apparent average size of crystallites increased by increasing the percentage of MWCNTs. The average crystallite size of samples (at 600°C), estimated by Scherrer’s equation was found to be ~50-60 nm and was confirmed by TEM. MWCNTs kept their cylindrical graphitic structure in composites and pinned and fastened HAp by the formation of hooks and bridges.
S. M. Mostafavi Kashani, H. Rhodin, S. M. A. Boutorabi,
Volume 10, Issue 3 (9-2013)
Abstract

The influences of age hardening and HIP (Hot Isostatic Pressing) on the mechanical properties of A356 (Al 7Si 0.6 Mg) casting alloys were studied. Cast bars were homogenized, heated and maintained at a temperature of 540°C for a duration of 2 hours, followed by rapid cooling in a polymeric solution. The castings were age hardened at 180°C for a duration of 4 hours before being subjected to HIP process at pressure of 104 MPa for 2 hours. The results indicated that the age hardening process used improved the tensile properties of A356. The HIP process removed the internal surface-connected porosities and improved the ductility of the samples significantly. Additionally, HIP reduced scattering in the tensile test data
M. Ghavidel, S. M. Rabiee, M. Rajabi,
Volume 11, Issue 1 (3-2014)
Abstract

In this study, porous titanium composites containing 5, 10 and 15 wt. % nanobioglass were fabricated by space holder sintering process. The pore morphology and phase constituents of the porous samples were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties were determined by compression test. The porosity of the sintered samples showed an upward trend with an increase in bioglass content. As the bioglass content was increased, the compressive strength was first increased and then decreased. The results obtained in this work suggest that the fabricated porous compact with 10 wt. % bioglass with compressive strength value of about 76.7 MPa, high porosity and good biocompatibility has the potential application for bone tissue engineering.
M. Kadkhodaee, H. Daneshmanesh, B. Hashemi, J. Moradgholi,
Volume 11, Issue 1 (3-2014)
Abstract

Accumulative roll-bonding process (ARB) is an important severe plastic deformation technique for production of the ultrafine grained, nanostructured and nanocomposite materials in the form of plates and sheets. In the present work, this process used for manufacturing Al/SiO 2 nanocomposites by using Aluminum 1050 alloy sheets and nano sized SiO 2 particles, at ambient temperature. After 8 cycles of ARB process, the tribological properties and wear resistance of produced nanocomposites were investigated. The wear tests by abrasion were performed in a pinon-disc tribometer. Results show that by increasing ARB cycles and the amount of nano powders, the friction coefficient of produced nanocomposites decreases.
S.r. Allahkaram, H. Mazaheri,
Volume 11, Issue 3 (9-2014)
Abstract

Ni-P Electroless coatings provide appropriate resistance to wear and corrosion. Co-deposition of particles between layers can improve their properties, especially general corrosion and erosion-corrosion behavior by means of nano diamond as reinforcing particles. In this study Ni-P/nano diamond composite deposition were deposited on steel substrate. Structure of the coatings and corrosion resistance of theme were investigated by scanning electron microscopy and corrosion tests in salty media. The composite structure of the deposit was evaluated as nano size without using any surfactants. Also results for the composite coating show better corrosion protection and higher hardness comparing with as -deposited Ni-P. The optimum concentration of diamond nanometer particles were found by evaluation of scanning electron microscopy pictures, hardness measurement, linear polarization and electrochemical impedance spectroscopy results
M. Azizi, M. Soltanieh,
Volume 11, Issue 3 (9-2014)
Abstract

In the present research, to form niobium carbide coating on the surface of AISI L2 steel Thermo-Reactive Deposition method (TRD) in a molten bath was used. Niobium carbide coating treatment was carried out at 1173 K, 1273 K, and 1373 K for 2, 4, and 8 hours. The molten bath contained 20wt.% borax (Na2B4O7), 5 wt.% boric acid (B2O3), and 75 wt.% ferro-niobium. The presence and properties of the coated layer were studied by means of Optical Microscopy (OM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD) analysis. The thickness of coating ranged between 6.6 µm to 33µm depending on treatment time, and temperature. The effects of treatment time and temperature on the coating thickness were studied. Kinetic study of the formation of NbC coating showed that growth of the coating is under the control of diffusion. The activation energy of the process was estimated to be 122 kJ/mol. A practical formula to estimate the coating thickness was suggested.
M. Ahangarkani, K. Zangeneh-Madar, H. Abbaszadeh, A. A. Rahmani , S. Borgi,
Volume 11, Issue 3 (9-2014)
Abstract

In the present paper, the influence of cobalt additive on the sintering/infiltration behavior of W-Cu composite was studied. For this purpose, the mixed powders of tungsten and cobalt were compacted by CIP method and then sintered at 1450, 1550 and 1600 °C in a hydrogen atmosphere. The sintered specimens at 1550 °C were subsequently infiltrated with liquid copper at 1250 °C for 10, 60 and 120 min. The microstructure and composition of samples were evaluated using SEM, EDS as well as XRD techniques. The density of the sintered samples was measured by Archimedes method. Vickers indentation test was used to measurement hardness. It was found that sintering mechanism of tungsten powder depends on temperature and cobalt additive content. Also, the best infiltration behavior was observed in the samples with optimum cobalt value. In addition, it was found that the W-W contiguity as well as dihedral angle decreases as cobalt increases. Density and hardness of infiltrated specimens are attained 16.28-16.79 g.cm-3 and 220-251 VHN, respectively.
Z. Abadi, S. M. Bidoki, V. Mottaghitalab, A. Benvidi, A. Shams-Nateri,
Volume 11, Issue 3 (9-2014)
Abstract

Silver nanoparticles are being given considerable attention because of their interesting properties and potential applications. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. This paper presents a novel direct-writing process for fabrication of the first deposited silver nanoparticles (AgNPs) (50-200nm) electrode via a thermal inkjet printer. In this method, AgNPs were chemically deposited by ejection of ascorbic acid and silver nitrate solutions onto different substrates such as paper and textile fabrics. Silver deposited patterns were used as electrodes in different electrochemical experiments and their morphology was also investigated in SEM observations. The highest conductivity of deposited electrodes obtained on paper as the substrate was found to be around 5.54x105 S/m. Inkjet fabricated electrodes exhibited acceptable electrochemical behavior in experiments designed for measuring the concentration of hydrogen peroxide as a fundamental procedure for early determination of glucose. This novel inkjet silver deposition technique is introduced to be considered as a promising method for ultimate single step fabrication of different electrochemical bio-sensors.
N Parvin, R Derakhshandeh Haghighi, M Naeimi, R Parastar Namin, M. M. Hadavi,
Volume 11, Issue 4 (12-2014)
Abstract

In this research, infiltration behavior of W-Ag composite compacts with Nickel and Cobalt as additives has been investigated. Nickel and Cobalt were added to Tungsten powder by two distinct methods: mixing elementally and reduction of salt solution. The coated Tungsten powders were compacted under controlled pressures to make porous skeleton with 32-37 vol. % porosity. Infiltration process was carried out at 1100 ̊C under a reducing atmosphere for 1h. The effect of additives on infiltration of Ag and density were evaluated by SEM and Archimedes methods. Properties of the specimens were compared following two distinct processes namely: I) sintering simultaneously with infiltration process and II) sintering prior to infiltration (pre-sintering process). It was found that specimens which were pre-sintered and then infiltrated with molten silver represent higher hardness and finer microstructure than the specimens infiltrated simultaneously with sintering.

Page 3 from 8     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb