Search published articles



Nguyen Vu Uyen Nhi, Doan Duong Xuan Thuy, Do Quang Minh, Kieu Do Trung Kien,
Volume 20, Issue 3 (9-2023)
Abstract

This paper introduces a method for producing red copper glaze by adding copper oxide (CuO) and silicon carbide (SiC) additives to the base glaze. SiC created a reducing environment in situ and allowed the glaze to be sintered in an oxidizing furnace environment. Nanocrystals are the determinants of the red color of the glaze. The CuO reduction reaction temperature range of SiC produces a reducing environment in the glaze as detected by the method (DSC). The functional group and phase of nanocrystals were determined by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) spectroscopy. 

Bijan Eftekhari Yekta, Omid Banapour Ghafari,
Volume 20, Issue 4 (12-2023)
Abstract

Glasses in the B2O3-Li2 (O, Cl2, I2) system were prepared through the conventional melt-quenching method. Then, the conductivity of the molten and glassy states of these compositions was evaluated. Furthermore, the thermal and crystallization behavior of the glasses was determined using simultaneous thermal analysis (STA) and X-ray diffractometry (XRD). The electrical conductivity of the melts was measured at temperatures ranging from 863 to 973 K, and the activation energy of the samples was calculated using the data obtained from ion conduction in the molten state and found to be in the vicinity of 32 kcal/mol. In glassy states, electrical conductivity was also measured. To determine this property, the electrochemical impedance spectroscopy method (EIS) was used. In the molten state, temperature played an important role in the ion conductivity; however, at lower temperatures, other factors became important. Based on the results, the addition of LiI and LiCl to the B2O3-Li2O base glass system (75 B2O3, 10 Li2O, 7.5 LiI, 7.5 LiCl) (mol%) increases the ionic conductivity of the glass from 3.2 10-8 S.cm-1 to 1.4 10-7 S.cm-1 at 300 K.
 
Hamed Nadimi, Hossein Sarpoolaky, Mansour Soltanieh,
Volume 20, Issue 4 (12-2023)
Abstract

In the present investigation, an attempt was made to evaluate the dissolution behavior of Ti in molten KCl-LiCl. The X-ray diffraction (XRD) pattern of heated Ti plate at 800 oC for 4 h without carbon black in molten salt revealed that TiCl3 formation was feasible. For more assurance, Ti plate was heated at 950 oC for 4 h in the presence of carbon black to identify synthesized TiC. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images from precursors and the final product showed that nano-crystalline TiC formation from coarse Ti particles was almost impossible without Ti dissolution. Thermodynamics calculations using Factsage software proved that it was possible to form various TiClx compounds. The TiC formation mechanism can be discussed in two possible ways: a reaction between Ti ion and carbon black for synthesizing TiC (direct) and a reaction between TiCl4 and carbon black led to indirect TiC synthesis. Elemental mapping using energy dispersive X-ray spectroscope (EDS) indicated that up to 815 oC, chlorine existed in the map. 


Page 5 from 5     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb