Search published articles


Showing 2 results for Youzbashi

M. M. Kashani Motlagh, A. A. Youzbashi, Z. Amiri Rigi,
Volume 8, Issue 4 (december 2011)
Abstract

 A natural bentonite obtained from Khorasan, Iran, was submitted to acid activation with sulphuric acid. Sample aliquots (5gr)
were leached with 100 ml H2SO4 solutions of various concentrations (2–7N) at 80±2 oC for 2 hours. X–ray diffraction, chemical analysis, infrared spectroscopy and specific surface area measurements were performed in order to evaluate important structural modifications occurring as a result of acid attack. Octahedral sheet was affected by acid activation resulting into the dissolution of cations (Mg2+, Fe2+, Al3+) and consequent decomposition of montmorillonite structure. Bentonite samples were then tested in order to verify their capacity to bleach colza–soybean oil, and their performances were compared to that of a commercial bleaching clay. The bleaching ability of the natural clay was poor when compared with that of the industrial adsorbent. Acid activation of the bentonite sample with 7N sulphuric acid yielded an adsorbent material which was highly efficient in the bleaching of the oil functioned better than the commercial clay product under the same conditions.
A. Ahmadi, A. A. Youzbashi, A. Nozad, A. Maghsoudipour, T Ebadzadeh,
Volume 11, Issue 4 (December 2014)
Abstract

Synthesis of YSZ nanopowder by alkoxide sol-gel method, through two different hydrolysis routes, one under careful control by using acetyacetone as ligand, and the other through basic hydrolysis, was investigated. The synthesized powders were characterized by various analytical techniques such as, XRD, STA, PSA, BET, SEM, and TEM. The results showed that, the YSZ powders prepared through the basic hydrolysis route consist of weakly agglomerated nanosized spherical particles whereas the products obtained through the controlled hydrolysis route, consist of hard irregular shaped agglomerates. Sinterability of these powders was examined at 1480 °C, which showed that the powder synthesized through the basic hydrolysis route attains a density of 94%, against 60% for the other case. It was therefore concluded that, alkoxide sol-gel method through basic hydrolysis route, can be more suitable for the synthesis of YSZ nanopowder and its subsequent sintering.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb