Search published articles


Showing 2 results for Sadeghian

Z. Sadeghian, R. Dezfulizadeh,
Volume 13, Issue 2 (June 2016)
Abstract

In situ Al2024- Mg2Si composite was fabricated by spark plasma sintering (SPS) of reactive powder. Reactive powder was obtained from mechanical alloying (MA) of elemental powders. Clad layers of in situ composite were fabricated on Al substrates by spark plasma sintering (SPS). Structural evolution during MA process and after SPS was investigated by X-ray diffractometery (XRD). Scanning electron microscopy (SEM) was utilized to study the microstructure of sintered samples. Hardness and tensile behavior of sintered samples were investigated. The results showed that SPS of mechanically alloyed unreacted powder can result in the in situ formation of Mg2Si and Mg2Al3 within the Al matrix. SPSed clad layer showed a sound and clear interface to the Al substrate with a hardness of about 140 HV. Sintered in situ composite exhibited a tensile strength of 288 MPa.

AWT IMAGE


Saba Payrazm, Saeid Baghshahi, Zahra Sadeghian, Amirtaymour Aliabadizadeh,
Volume 19, Issue 3 (September 2022)
Abstract

In this research, zinc oxide quantum dots and graphene nanocomposites were synthesized via two different methods; In the first (direct) method, ZnO-graphene Nanocomposites were made mixing the synthesized zinc oxide and graphene. In the second (indirect) method, zinc nitrate, graphene, and sodium hydroxide were used to made ZnO-graphene Nanocomposites. XRD, FTIR and Raman spectroscopy analyses were used for phase and structural evaluations. The morphology of the nanocomposites w::as char::acterized by SEM. The specific surface area and porosity of the samples were characterized by BET analysis. The optical properties of the samples were investigated by photoluminescence and ultraviolet-visible spectroscopy analyses. Results showed that using graphene, increased the photoluminescence property and shifted the photoluminescence spectrum of the composites towards the visible light spectrum. The photoluminescence of the synthesized graphene-zinc oxide composite, in the visible light region, was closer to white light than that of pure zinc oxide. According to the results of BET test, the nanocomposite synthesized by direct method had a higher surface area (25.7 m2.g-1) and a higher porosity (0.32 cm3.g-1) than the nanocomposite synthesized by the indirect method with a specific surface area of (16.5 m2.g-1) and a porosity of 0.23 cm3.g-1).


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb