Search published articles


Showing 2 results for Mahdavi

S. Akbarzadeh, S.r. Allahkaram, S. Mahdavi,
Volume 15, Issue 2 (June 2018)
Abstract

Tin-Zinc alloy coatings have many applications because of their unique properties such as corrosion resistance, solderability and flexibility. In this study, the effect of current density, temperature and pH on chemical composition, cathodic current efficiency, morphology and structures of the coatings was investigated. The results illustrated that, at low current densities (<0.5 mA/cm2), the coatings were relatively pure tin, but Zn content increased with enhancing the current density. At higher currents a relatively pure Zn film was obtained. Temperature and pH also affected chemical composition of the alloy films. Zn content of the coatings was decreased by increasing the temperature, while its variation with pH had ascending-descending trend. Morphological investigation of the coatings revealed that increasing Zn content of deposits led to porous, rough and fine grained films.


Hamid Ansari, Saeed Banaeifar, Reza Tavangar, Alireza Khavandi, Soheil Mahdavi,
Volume 19, Issue 3 (September 2022)
Abstract

The present study aimed to assess the effect of replacing copper as a multi-functional ingredient in the brake pad material with potassium titanate platelet (PTP) and a particular type of ceramic fiber (CF) copper-free composite. Chase dynamometer tests were conducted to compare a brake padchr('39')s tribological behavior when PTP and CF are added to the composition with that of the copper-bearing pad. The results concluded that PTP and CF demonstrated promising outcomes such as a stable coefficient of friction (COF), lower wear rate, and better heat resistance in copper-free friction composite. Scanning electron microscope (SEM/EDS) analysis was conducted to investigate the role of main elements such as Ti, Fe, K, O, and C on the formation of contact plateaus (CPs) upon the worn surface of friction composites. PTP maintained both continuous contact and smooth friction braking application of a brake pad. The uniform distribution of Ti on the wear track on the disc worn surface depicts the role of PTPs on stabilizing the friction film formation and eventually on the stability of COF.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb