Search published articles


Showing 3 results for MOZTAR ZADEH F.

Mir Habibi A.r., Rabiei M., Agha Baba Zadeh R., Moztar Zadeh F., Hesaraki S.,
Volume 1, Issue 3 (Apr 2004)
Abstract

ZnS : Cu phosphors were prepared by using laboratory grade chemicals through coprecipitating Cu along with ZnS using H2S and thiourea. Photo- and electroluminescence studies indicate that these phosphors have better emission characteristics compared to the phosphors in which activator is externally added. Phosphors with luminescence at ~530nrn were prepared. The difference between the characteristic properties of the samples seems to be due to formation of nanoparticles during the preparation of the samples by different methods.
Nojehdehyan H., Moztar Zadeh F., Mir Zadeh Hamid, Hesaraki S., Keyanpour-Rad M.,
Volume 2, Issue 2 (Jan 2005)
Abstract

The effect of addition of NaHF2 on the cement setting and the set mass has been studied as an initial step to determine how fluoride influences the characteristics of a calcium phosphate cement, consisting of tetracalcium phosphate [TTCP:Ca4 (PO4)2O] and dicalcium phosphate dihydrate [DCPD:CaHPO4.2H2O].NaHF2 [0-10% wt% of powder phase] has been dissolved in double distilled water and used as the liquid phase of the apatite cement (AC). Powder X-ray diffraction analysis and FTIR measurements revealed that fluoride was necessary in promoting the formation of the apatite phase. The setting time was decreased significantly by the addition of NaHF2from 0% to 6%, but increased resulted in the AC (8-10%). The set AC (2%) has the highest compressive strength and the lowest porosity.The dissolution rate of set AC in weak acid, pH 5.5, was decreased with the amount of added NaHF2 from 0% to 6% but increased in the set AC 8-10%.The formation of fluoroapatite in AC (6%) was provided the low solubility and good acid resistance which is necessary for dental application.SEM observation showed needle-like apatite crystal growth over particulate matrix surface, however the amount of non-reactive TTCP or DCPD particles decreased by the addition of NaHF2. The Ca/P ratio, which was determined by EDAX, increased significantly with the addition of NaHF2.
Salahi E., Ebadzadeh T., Moztar Zadeh F., Solati Hashjin M.,
Volume 2, Issue 4 (Jul 2005)
Abstract

Compositions of Al2O3+Si, SiO2+Al and Al+Si systems were prepared to study the effect of reaction bonding process on the mullite formation. The composition of each system was adopted according to mullite stoichiometery and sintered in 700-1600°C range. Results showed that the formation of reaction bonded mullite starting from Al2O3+Si mixtures, proceeded in two partially overlapping steps, the oxidation of Si to SiO2, and the reaction of SiO2 and Al2O3 to form mullite. In this system, up to 1400°C, conversion of Si to SiO2 was taken place and cristobalite formed, but mullite formation was not observed. Mullite phase started to form at 1450°C. Results indicated that complete reaction was not occurred up to 1600°C and 2 hours soaking time. XRD patterns of samples in Al+ SiO2 system showed that the reaction through sequences: (a) reduction of SiO2 by Al, (b) formation of a- Al2O3 and SiO2-rderived Si oxidation, and (c) mullite formation. X-ray diffraction patterns of heat-treated Al+Si system showed that reaction between Al and oxygen at 900°C was occurred with the reaction product being a- Al2O3 Oxidation of Si and formation of mullite were not detected in this system. SEM micrographs showed that both Al2O3+Si and SiO2+Al systems have similar microstructures, which consisted of a- Al2O3, mullite and free Si. The microstructures of the samples in Al+Si system consisted of a- Al2O3 free Al and Si with intermetallic Al-Si compound.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb