Search published articles


Showing 3 results for Jafarian

H. R. Jafarian, E. Borhani,
Volume 10, Issue 2 (June 2013)
Abstract

In this research, variant selection of martensite transformed from ultrafine-grained (UFG) austenite fabricated by accumulative roll bonding (ARB) process and subsequent annealing was investigated with respect tomorphology of parentaustenitic phase. The results show that the original shape of austenite grain is very effective factor in determiningthe preferred variants of martensite transformed from the elongated ultrafine-grained austenite fabricated by 6-cycles via the ARB process. Annealing treatment of the austenitic samples subjected to the 6-cycle ARB processed at 873 K for 1.8 ks suppressed the variant selection by changing the morphology of austenite grains from elongated ultrafine-grains to fully-recrystallized and equiaxed fine-grains
H. Jafarian, H. Miyamoto,
Volume 17, Issue 1 (March 2020)
Abstract

In the present work, accumulative roll bonding (ARB) was used as an effective method for processed of nano/ultrafine grained AA6063 alloy. Microstructural characteristics indicate considerable grain refinement leading to an average grain size of less than 200 nm after 7 ARB cycles. Texture analysis showed that 1-cycle ARB formed a strong texture near Copper component ({112}<111>). However, texture transition appeared by increasing the number of ARB cycles and after 7-cycle of ARB, the texture was mainly developed close to Rotated Cube component ({100}<110>). The results originated from mechanical properties indicated a substantial increment in strength and microhardness besides a meaningful drop of ductility after 7 ARB cycles.

Amirreza Bali Chalandar, Amirreza Farnia, Hamidreza Najafi, Hamid Reza Jafarian,
Volume 22, Issue 1 (March 2025)
Abstract

This study investigates the microstructural evolution and variations in the mechanical properties of pre-cold worked Nimonic 80A superalloy, subjected to two levels of deformation (25% and 50%) and welded via Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques using ER309L filler wire. The objective is to evaluate the effect of the initial microstructure on the welding behavior of Nimonic 80A and compare the weldments produced using GTAW and PCGTAW. Microstructural characterization was conducted using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). XRD analysis demonstrated that the welding pulsed current mode, compared to the continuous current mode and at equal heat input, led to a refined microstructure, suggesting improved welded mechanical properties of the weld. It also showed a potential reduction in grain refinement with a higher level of cold work. Tensile testing demonstrated that fractures consistently occurred within the weld zone (WZ), with the PCGTAW sample achieving the highest tensile strength (766 MPa). Microhardness analysis indicated a notable reduction in hardness within the heat-affected zone (HAZ) and WZ, particularly in the 50% pre-cold worked sample. However, PCGTAW retained higher hardness due to its refined microstructure. The weld metal primarily consisted of an austenitic microstructure characterized by dendrites and interdendritic precipitates. Microstructural analysis revealed that welding induced significant changes in the weldment, with the PCGTAW sample exhibiting a more uniform microstructure and smoother transitions at the weld interface. Fractography confirmed ductile fracture in all specimens, with smoother and more uniformly distributed dimples in the PCGTAW sample. These findings highlight the advantages of pulsed current welding in optimizing the mechanical performance of Nimonic 80A welds and suggest its potential application in industries requiring superior weld quality.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb