Search published articles


Showing 3 results for Eivani

H. Mirzakouchakshirazi, A. Eivani, Sh. Kheirandish,
Volume 14, Issue 4 (December 2017)
Abstract

Effects of annealing treatment after equal channel angular pressing (ECAP) on the interface properties and shear bond strength of Al/Cu bimetallic rods were investigated. For the as-deformed samples, the one with two passes of ECAP indicated higher shear bond strength. Formation of a layer of intermetallic compounds after annealing treatment is confirmed. In general, by increasing annealing temperature, thickness of intermetallic compounds at the interface increases. Shear bond strength was initially reduced by annealing at 200, 250 and 300 ͦ C and increased at 350 ͦ C. With further increase in annealing temperature to 400 ͦ C, shear bond strength slightly decreased which is correlated to the increased thickness of the intermetallic compounds.

A. Eivani, S.h. Seyedein, M. Aboutalebi,
Volume 15, Issue 1 (March 2018)
Abstract

In this research, samples of AlMg0.7Si aluminum alloy are deformed up to three passes using equal channel angular pressing (ECAP). Formation of a sub-micron structure after three passes of ECAP is demonstrated. Microstructural stability of the samples is investigated at temperatures of 300-500 °C. At 300 °C, fine recrystallized structure forms after 10 min which remains stable when the annealing proceeds up to 18 hrs. However, at 350 °C and higher, the microstructure is quite unstable. Even by 10 sec annealing, the samples exhibit recrystallized structure which turned to abnormal grain growth when temperature enhances to 500 °C and time up to 300 sec.
 

Bahram Azad, Ali Reza Eivani, Mohammad Taghi Salehi,
Volume 20, Issue 4 (December 2023)
Abstract

Microstructure evolution and mechanical properties of Zn-22Al alloy after post-ECAP natural/artificial aging were investigated. A homogenization treatment was applied to the casting samples. In addition, after preparing the samples for the ECAP, secondary homogenization treatment was done and then the samples quenched in the water to form a fine grain structure. After 8 passes of ECAP, some ECAPed samples were naturally aged and some ECAPed samples were artificially aged. Natural aging after 8 passes of ECAP showed that Zn-22Al alloy has a quasi-stable microstructure because limited grain growth occurred. Two-phase structure of Zn-22Al alloy prevented excessive grain growth after natural aging. On the other hand, artificial aging after 8 passes of ECAP caused a relatively much grain growth took place. In shorter times of artificial aging, the grain growth rate is faster due to the high surface energy of grain boundaries. On the contrary, as the time of artificial aging increased, the surface energy of grain boundaries decreased, which leads to a decrease in the grain growth rate. In addition, texture evolution was studied after aging artificial. Therefore, the main texture of α and η phases was determined.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb