Search published articles


Showing 2 results for Ebrahimpour

Amir Mostafapour, Milad Mohammadi, Ali Ebrahimpour,
Volume 18, Issue 2 (June 2021)
Abstract

A full factorial design of experiment was applied running 36 experiments to investigate the effects of milling parameters including cutting speed with three levels of 62.83, 94.24 and 125.66 m/min, feed rate with three levels of 0.1, 0.2 and 0.3 mm/tooth, cutting depth with two levels of 0.5 and 1 mm and machining media with two levels, on surface integration properties of magnesium AZ91C alloy such as grain size, secondary phase percent, surface microhardness and surface roughness. In all cases, a fine grained surface with higher secondary phase sediment and microhardness obtained comparing the raw material. According to analysis of variance results, the most effective parameter on grain size, secondary phase percent and microhardness was cutting depth and the most effective parameter on surface roughness was feed rate. although the grain size in all machined samples was smaller than that of the raw material but due to the dual effect of cryogenic conditions, which both cool and lubricate and reduce the temperature and strain rate at the same time, the direct effect of this parameter on grain size was not significant. Also, the all interaction effects of parameters on grain size and microhardness were significant.
Ali Ebrahimpour, Amir Mostafapour, Naeimeh Hagi,
Volume 20, Issue 1 (March 2023)
Abstract

In this research, the effect of RSW parameters including current intensity, welding time and welding force (coded by A, B and C) on the radius, thickness and area of ​​the nugget and the radius of the HAZ of TRIP steel joints was investigated by DOE and RSM. A 3D coupled thermal-electrical-structural FEM was used to model RSW. To validate the FE model, two TRIP steel sheets were welded experimentally. During welding, the temperature was measured and the results were compared with the FE results and a good agreement was obtained. The boundaries of the welding zones were determined according to the critical temperatures and the responses in all samples were calculated. Using analysis of variance, direct, quadratic and interaction effects of parameters on the responses were studied and a mathematical model was obtained for each response. The direct linear effects of all parameters on all responses were significant. But among the interaction effects, the effect of B×C on the nugget radius, the effect of A×B on the nugget thickness, the effect of A×B on the nugget area and the effects of A×B and B×C on the HAZ radius were significant.  Also, current intensity had the greatest effect on all responses.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb