Search published articles



Lakshmiprasad Maddi, Srinivas R Gavinola, Atul Ballal,
Volume 21, Issue 2 (6-2024)
Abstract

High thermal conductivity, low coefficient of thermal expansion makes P92 a candidate material for Ultra Super Critical (USC) power plant piping. Microstructural features viz., high dislocation density, lath martensitic microstructure, fine precipitates of M23C6 and MX (X=C, N) contribute towards the high rupture strength. However, most components are typically subjected to multiaxial stress conditions; either metallurgical (weldments), or mechanical (change in the dimension). The present work involves stress rupture testing of circumferential 60° V- notch specimens in the range of 300 – 375 MPa at 650 °C. Notch strengthening effect was observed; with rupture times ranging from 200 – 1300 h. Scanning electron microscopy (SEM) fractography revealed mixed mode of fracture with brittle fracture observed at notch root, while ductile fracture was seen at the centre of the specimen.
 

Padmanaban Ramasamy,
Volume 21, Issue 2 (6-2024)
Abstract

The present investigation delves into the friction stir welding of AA5052 and AZ31B alloys, examining the effects of three distinct parameter configurations. A face-centered central composite design, structured to incorporate full replications for comprehensive and reliable analysis, was employed. A pivotal element of this study is implementing an advanced deep neural network (DNN) model. Characterized by its varied activation functions, structural parameters, and training algorithms, this DNN model was adeptly configured to precisely predict the tensile strength and microhardness of the welded joints. This comprehensive examination also included a quantitative assessment of the parameter effects on joint microstructure and mechanical properties. Flawless welds with exemplary surface characteristics were attained through a meticulously optimized set of parameters: a tool rotation speed set at 825 rpm, a tool traverse speed of 15 mm/min, and a shoulder diameter of 18 mm. During the welding process, the formation of intermetallic compounds, specifically Al12Mg17 and Al3Mg2, was observed. An exceptionally refined grain size of 2.23 µm was observed in the stir zone, contributing to the joint's enhanced tensile strength, measured at 180 MPa. The hardness of the specimen fabricated at the high rotational speed is more elevated due to the brittle intermetallic compounds. The better mechanical properties are related to the reduction and distribution of intermetallic compounds formed in the interface zone.  

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb