Search published articles



Sajad Ghaemifar, Hamed Mirzadeh,
Volume 20, Issue 4 (12-2023)
Abstract

Phase transformations and the evolution of hardness during elevated-temperature annealing of Inconel 718 superalloy manufactured by the laser powder bed fusion (L-PBF) were investigated. The microstructural evolution, elemental analysis, phase formation, and hardening were characterized by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and Vickers indentation test, respectively. It was observed that the effect of annealing treatments is directly governed by the annealing parameters (i.e. time and temperature), for which the hardness measurement as a fruitful and convenient tool can reveal this effect. The increase of the hardness, which was obtained by the annealing (aging) treatments at the temperature range of 800-900 °C, indicated precipitation of the Ni3Nb γ˝ strengthening phase; while owing to the coarsening of precipitates as a results of overaging at this temperature range, the hardness decreased. For instance the length and aspect ratio of precipitates in the aged sample at 800 °C for 1 h is 67.14 nm and 0.32, respectively; while these values in the aged sample at 800 °C for 8 h is 78.34 nm and 0.44, respectively. On the other hand, the decrease of the hardness at temperatures of 950 and 1000 °C was attributed to the decrease of dislocation density in conjunction with the Ni2Nb Laves phase dissolution. Hence, it is crucial to determine the annealing parameters according to the required microstructure and properties.
Adeel Hassan,
Volume 20, Issue 4 (12-2023)
Abstract

Friction stir additive manufacturing (FSAM) is a variant of sheet lamination additive manufacturing used to produce large, near-net-shaped 3D parts. Unlike traditional friction stir lap welding, FSAM introduces a new plate to one that is already joined, with the effective area limited to the nugget zone. The present study focuses on exploring the microstructure and microhardness around the nugget zone in a five-plate AA 7075-T651 laminate synthesized at 1000 rpm and 35 mm/min. Microhardness increased vertically in the weldment NZ, reaching 143 HV in the top layer with 2.0 μm fine equiaxed grains. The grains on the advancing and retreating sides were coarser compared to the nugget zone. A W-shaped microhardness profile appeared across layer interfaces. These findings contribute significantly to advancing the FSAM technique, particularly in manufacturing multi-layered, multi-pass laminates.
Tumelo Moloi, Thywill Cephas Dzogbewu, Maina Maringa, Amos Muiruri,
Volume 21, Issue 0 (3-2024)
Abstract

The stability of microstructure at high temperatures is necessary for many applications. This paper presents investigations on the effect of changes in temperature on the microstructures of additively manufactured Ti6Al4V(ELI) alloy, as a prelude to high temperature fatigue testing of the material. In the present study, a Direct Metal Laser Sintering (DMLS) EOSINT M290 was used to additively manufacture test samples. Produced samples were stress relieved and half of these were then annealed at high temperatures. The samples were then heated from room temperature to various temperatures, held there for three hours and thereafter, cooled slowly in the air to room temperature. During tensile testing, the specimens was heated up to the intended test temperature and held there for 30 minutes, and then tensile loads applied to the specimens till fracture. Metallographic samples were then prepared for examination of their microstructures both at the fracture surfaces and away from them. The obtained results showed that changes in temperature do have effects on the microstructure and mechanical properties of Ti6Al4V(ELI) alloy. It is concluded in the paper that changes in temperature will affect the fatigue properties of the alloy.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb